Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 737140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803951

RESUMO

Dry fermented sausages are produced worldwide by well-controlled fermentation processes involving complex microbiota including many bacterial and fungal species with key technological roles. However, to date, fungal diversity on sausage casings during storage has not been fully described. In this context, we studied the microbial communities from dry fermented sausages naturally colonized or voluntarily surface inoculated with molds during storage using both culture-dependent and metabarcoding methods. Staphylococci and lactic acid bacteria largely dominated in samples, although some halotolerant genera (e.g., Halomonas, Tetragenococcus, and Celerinatantimonas spp.) were also frequently observed. Fungal populations varied from 7.2 to 9.8 log TFU/cm2 sausage casing during storage, suggesting relatively low count variability among products. Fungal diversity identified on voluntarily inoculated casings was lower (dominated by Penicillium nalgiovense and Debaryomyces hansenii) than naturally environment-inoculated fermented sausages (colonized by P. nalgiovense, Penicillium nordicum, and other Penicillium spp. and sporadically by Scopulariopsis sp., D. hansenii, and Candida zeylanoïdes). P. nalgiovense and D. hansenii were systematically identified, highlighting their key technological role. The mycotoxin risk was then evaluated, and in situ mycotoxin production of selected mold isolates was determined during pilot-scale sausage productions. Among the identified fungal species, P. nalgiovense was confirmed not to produce mycotoxins. However, some P. nordicum, Penicillium chrysogenum, Penicillium bialowienzense, Penicillium brevicompactum, and Penicillium citreonigrum isolates produced one or more mycotoxins in vitro. P. nordicum also produced ochratoxin A during pilot-scale sausage productions using "worst-case" conditions in the absence of biotic competition. These data provide new knowledge on fermented sausage microbiota and the potential mycotoxin risk during storage.

2.
Hum Mol Genet ; 23(17): 4479-90, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24714983

RESUMO

Hemochromatosis type 4 is a rare form of primary iron overload transmitted as an autosomal dominant trait caused by mutations in the gene encoding the iron transport protein ferroportin 1 (SLC40A1). SLC40A1 mutations fall into two functional categories (loss- versus gain-of-function) underlying two distinct clinical entities (hemochromatosis type 4A versus type 4B). However, the vast majority of SLC40A1 mutations are rare missense variations, with only a few showing strong evidence of causality. The present study reports the results of an integrated approach collecting genetic and phenotypic data from 44 suspected hemochromatosis type 4 patients, with comprehensive structural and functional annotations. Causality was demonstrated for 10 missense variants, showing a clear dichotomy between the two hemochromatosis type 4 subtypes. Two subgroups of loss-of-function mutations were distinguished: one impairing cell-surface expression and one altering only iron egress. Additionally, a new gain-of-function mutation was identified, and the degradation of ferroportin on hepcidin binding was shown to probably depend on the integrity of a large extracellular loop outside of the hepcidin-binding domain. Eight further missense variations, on the other hand, were shown to have no discernible effects at either protein or RNA level; these were found in apparently isolated patients and were associated with a less severe phenotype. The present findings illustrate the importance of combining in silico and biochemical approaches to fully distinguish pathogenic SLC40A1 mutations from benign variants. This has profound implications for patient management.


Assuntos
Proteínas de Transporte de Cátions/deficiência , Hemocromatose/genética , Anotação de Sequência Molecular , Mutação de Sentido Incorreto/genética , Adulto , Idoso , Substituição de Aminoácidos/genética , Transporte Biológico , Proteínas de Transporte de Cátions/sangue , Proteínas de Transporte de Cátions/genética , Simulação por Computador , Feminino , Ferritinas/sangue , Frequência do Gene/genética , Estudos de Associação Genética , Células HEK293 , Hemocromatose/sangue , Hepcidinas/farmacologia , Humanos , Espaço Intracelular/metabolismo , Ferro/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Splicing de RNA/genética , Relação Estrutura-Atividade , População Branca/genética , Adulto Jovem
3.
Hum Mutat ; 34(10): 1371-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23784628

RESUMO

Ferroportin (SLC40A1) is the only known iron exporter in mammals and is considered a key coordinator of the iron balance between intracellular and systemic iron homeostasis. However, the structural organization of ferroportin in the lipid bilayer remains controversial and very little is known about the mechanism underlying iron egress. In the present study, we have developed an approach based on comparative modeling, which has led to the construction of a model of the three-dimensional (3D) structure of ferroportin by homology to the crystal structure of a Major Facilitator Superfamily member (EmrD). This model predicts atomic details for the organization of ferroportin transmembrane helices and is in agreement with our current understanding of the ferroportin function and its interaction with hepcidin. Using in vitro experiments, we demonstrate that this model can be used to identify novel critical amino acids. In particular, we show that the tryptophan residue 42 (p.Trp42), which is localized within the extracellular end of the ferroportin pore, is likely involved in both the iron export function and in the mechanism of inhibition by hepcidin. Thus, our 3D model provides a new perspective for understanding the molecular basis of ferroportin functions and dysfunctions.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Hemocromatose/genética , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Códon , Hepcidinas/química , Hepcidinas/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...